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Model parameterization for the growth of three
submerged aquatic macrophytes

IRINEU BIANCHINI JR., MARCELA B. CUNHA-SANTINO, JURITY A. M. MILAN, CARLOS J. RODRIGUES, AND JOÃO
H. P. DIAS*

ABSTRACT

The development of an aquatic community can reflect
the anthropogenic influence on adjacent areas of a
freshwater system. The understanding of growth rates of a
key species is useful for planning management activities. In
this study, we used a kinetics model to evaluate growth of
three submerged macrophytes: Brazilian elodea (Egeria densa
Planch.), narrowleaf elodea (Egeria najas Planch.), and coon-
tail (Ceratophyllum demersum L.) under laboratory conditions
that simulate the in situ condition in a Neotropical,
constructed lake ecosystem (Jupiá Reservoir, Brazil). Incu-
bations were prepared with healthy apical tips of Brazilian
elodea, narrowleaf elodea, and coontail (n¼ 40; 5.0 cm long)
in 40 polystyrene pots filled with sediment from the
reservoir. A set of 10 pots were placed in a glass tank with
6.5 L of water from the reservoir. The fitting of the data
indicated that the growth of macrophytes exhibited an
average doubling time (td) between 11.6 (Brazilian elodea)
and 23.9 d (coontail) and yields varied between 8.6 (” 52.9
mg; Brazilian elodea) and 19.6 cm (” 217.8 mg; coontail).
The growth parameters suggest that these plants have a
close niche; however, in Neotropical aquatic systems, these
species coexist and compete with other native and aliens
submerged species. The floating genus can also present a td
with the same order of magnitude as that presented by
Egeria and Ceratophyllum. In this case, the floating plants have
an advantage in that light is not a limiting factor nor is the
shadowing effect that is imposed on submerged species.

Key words: aquatic plants, growth model, Neotropical
reservoir, vegetative reproduction.

INTRODUCTION

Aquatic macrophytes appear in seven plant divisions that
are widespread in the major biogeography areas, with the
largest species diversity in the Neotropical region (Cham-
bers et al. 2008). Their ability to adapt in both morpholog-
ical and physiological characteristics allowed these plants to
develop distinct ecological types (i.e., as floating, emergent,
or submerged life forms), with the macrophyte assemblage
being distributed according to several factors, such as

environmental factors and biological interactions. The
growth of submerged macrophytes, for instance, is regulat-
ed by such factors as the substrate grain size (Li et al. 2012),
the dissolved inorganic carbon available (James 2008, Freitas
and Thomaz 2011), the subsurface irradiance (Dale 1986,
Rørslett and Johansen 1995, Zhu et al. 2008), the concen-
trations of nutrients such as phosphorous and nitrogen
(Madsen and Cedergreen 2002, Zhu et al. 2008), the
interaction with other organisms (Ozimek et al. 1991), and
the colonization depth (Middelboe and Markager 1997,
Caffrey et al. 2007).

Although many factors affect the growth of aquatic
macrophytes, during summer in temperate regions and in
all seasons in the tropics, such plants usually present
doubling times (td) ranging typically from days (e.g., 3.1 d;
Vermaat and Hanif 1998) to weeks (e.g., 17.1 d; Téllez et al.
2008), depending on the aquatic system trophic status,
displaying a great potential to generate large populations
and, consequently, interfering in the multiple uses of
freshwater systems (Dodds et al. 2009).

In artificial reservoirs, ponds situated within floodplains,
and lakes, the littoral regions are usually colonized by
different species of macrophytes with distinct ecological
types (Thomaz et al. 2008), depending on the (1) topogra-
phy, (2) hydraulic regime (water level, flow, velocity), (3) light
intensity, (4) action of wind (speed and direction), (5)
temperature, and (6) availability of nutrients (water and
sediment) (Chambers et al. 2008, Sousa et al. 2009, Freitas
and Thomaz 2011, Martins et al. 2013). In such environ-
ments, the macrophytes often exhibit high productivity
(Best et al. 2001), which means that after senescence, they
become important autochthonous sources of detritus
(Murray and Hodson 1986), mediating the transfer of
carbon and nutrients for heterotrophic community (Piec-
zynska 1993, Cronin et al. 1998) and mediating the processes
related to diagenesis (Mitsch and Gosselink 1993; Reddy and
DeLaune 2008).

In addition to natural forcing functions, anthropogenic
influence is also relevant for aquatic communities (Martins
et al. 2013); therefore, understanding growth rates of a key
species, including aquatic plants, is useful for environmen-
tal management planning. The approach based on modeling
experimental data allows for testing hypotheses about
strategies of macrophyte growth, which may elucidate
ecological trends in a particular environment (Straškraba
1973). It also facilitates comparison of growth and decom-
position processes in ecosystems. Indeed, growth coeffi-
cients for macrophytes can be used to describe colonization
dynamics in ecosystems. Furthermore, mathematic model-
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ing may have general applicability to other aquatic
environments, thus contributing significantly to the deci-
sions of macrophyte control (Hu et al. 1998). In this context,
contrary to the empirical procedures usually adopted to
control the incidence of aquatic plants (e.g., harvest time
frame or harvest until a specific cover ratio or some biomass
yield) or to schedule their eradication, using the growth rate
constant (or the td of macrophyte growth) makes it possible
to derive more precisely the harvest frequency or the
temporal function of removing biomass to reach a desired
goal (Mahujchariyawong and Ikeda 2001).

Macrophyte growth models are valuable tools to improve
the understanding of macrophyte responses to anthropo-
genic stressors with parameterization being used to predict
future states (Best et al. 2001). In this study, we investigate
the growth of three submerged macrophytes under labora-
tory conditions simulating the in situ condition in which
these plants occur in a Neotropical, constructed lake
ecosystem. We also compare the potential expansion of
these macrophytes using the parameterization of growth
process, namely, the daily growth rates, number of
vegetative budding, yields, and growth rate constants. Our
hypothesis is that the native Neotropical species (Egeria) that
occurs in South American reservoirs present under the
experimental conditions, have a greater growth perfor-
mance than do similar cosmopolitan species (Ceratophyllum)
because of their greater adaptive value.

MATERIALS AND METHODS

Sampling area

The construction of Engineer Souza Dias Hydroelectric
Power Plant (Jupiá) was completed in 1974. It is located on
the Paraná River, between the cities of Andradina and
Castilho (São Paulo State) and Três Lagoas (Mato Grosso do
Sul State), Brazil (208500S; 51843 0W).

Besides the Paraná River, the reservoir has as tributaries
the Tietê and Sucuriú rivers. During normal operation (280
m above sea level), the reservoir has an area of 330 km2 with
an accumulated water volume of 3,680 3 106 m3, a total
length in the longitudinal axis of 54.95 km, an average width
of 6.0 km, a mean residence time of 6.9 d, a mean depth of
11.2 m, and is 20.0 m at maximum depth. It is classified as a
tropical system, with medium anthropogenic pressures and
a small (106 to 108 km2) to medium (102–104 km2) and
rapidly flowing through system (i.e., retention time less than
2 wks; Straškraba 1999). In addition to the large occurrence
of southern cattail (Typha domingensis Pers.), the reservoir
presents major infestations of submersed aquatic plants,
such as Brazilian elodea (Egeria densa Planch.), narrowleaf
elodea (Egeria najas Planch.), and coontail (Ceratophyllum
demersum L.) along the dammed stretch of the river Tietê and
in areas of the Paraná River with higher water transparency
(Velini et al. 2005).

During the past 3 yr—August 2010 to May 2012; quarterly
sampling at 4 sites: (1) 20824044.6 00S; 51822051.2 00W; (2)
20836001.6 00S; 51851009.5 00W; (3) 20841 033.0 00S; 51823014.3 00W;
(4) 20845025.4 00S; 51838011.3 00W; and 3 depths: (1) surface, (2)
middle, and (3) bottom—the reservoir had a large variation

in total phosphorus concentrations (minimum: 5 lg L�1;
maximum: 187 lg L�1) and was classified as mesotrophic
(average concentration: 25.3 lg L�1) according to Vollen-
weider (1968) and Companhia Energética de São Paulo
(unpub. data). The annual variation in water temperature
ranged from 20.0 C (August 2010) to 29.8 C (November
2011). According to limnological assessments performed by
CESP between 2010 and 2012, this reservoir had high
concentrations of dissolved oxygen (average 6 SD: 6.8 6 1.1
mg L�1), with an average water pH and electric conductivity
of 7.41 6 0.95 and 53.2 6 31.9 lS cm�1, respectively. The
turbidity was usually low (3.0 6 2.5 nephelometric turbidity
units [NTU]) and the average water transparency, as
measured by Secchi disk, was 4.3 6 1.9 m. The alkalinity
concentrations varied from 12 (August 2011) to 45 mg L�1

(May 2012). The average concentrations of total solids and
total organic nitrogen were, respectively, 2.3 mg L�1 and 135
lg L�1, and inorganics were the most prevalent form of solid
(approximately 86%). On average, the sediments contained
1.3% of organic matter, and the sand fraction (70%)
prevailed over silt (18%) and clay (12%) fractions.

Sampling procedures and experimental design

To determine the growth patterns of the macrophytes,
the following species were selected: Brazilian elodea,
narrowleaf elodea, and coontail. The choice of species was
based on the sizes of their incidence areas in the Jupiá
Reservoir and because of their interference to the operation
of the hydropower plant by accumulating in protection
grids and blocking the water intake of generating units
(Marcondes et al. 2003).

Stem samples (apical fragments) of Brazilian elodea and
narrowleaf elodea were collected (July 2009; winter season)
from Jupiá Reservoir at approximately 2.0 km upstream of
the dam (20846001.4 00S; 51836001.9 00W). Samples of coontail
were harvested (January 2010; summer season) in the littoral
zone (depth: 1.5 m) of the Tietê River embayment
(20841033.0 00S; 51823014.3 00W). At the sampling sites, the
extinction coefficient, measured at the time of collection,
was relatively low (0.45 m�1), presenting an euphotic zone
for at least for 10 m; the photosynthetically active radiation
(PAR) was estimated with underwater radiation sensor.1 In
the sampling areas, water and sediment were obtained with
a Van Dorn bottle2 and an Ekman-Birge dredge,3 respec-
tively. In the laboratory, the stems were washed with tap and
distilled water to remove adhered particles. The relation
between the average of fresh plant length and dry mass
(Brazilian elodea, n¼ 11; narrowleaf elodea, n¼ 10; coontail,
n ¼ 12) was determined by ruler and gravimetric measure-
ments (Goodman et al. 2010). After the fresh mass
determination, the stems were dried at 40 C, until constant
weight, and dry masses were determined by gravimetry
(Brazilian elodea, n ¼ 122; narrowleaf elodea, n ¼ 119;
coontail, n ¼ 140); Wetzel and Likens (1990). To set up
incubations, healthy apical tips of Brazilian elodea, narrowl-
eaf elodea, and coontail stem fragments (n¼40, 5.0 cm long)
were fixed in 40 polystyrene pots (diameter¼ 4.5 cm, height
¼ 4.0 cm, volume ¼ 40 ml) that were filled with sediment
from the reservoir (approximately 30 ml). To avoid
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increases in turbidity, a thin layer (approximately 1 cm) of
calcinated sand (2 h at 550 C) was added to the surfaces of
the pots. A set of 10 pots were placed in a glass tank
(diameter¼ 20 cm, height¼ 24 cm) with 6.5 L of water from
Jupiá Reservoir (height of water column¼ approximately 20
cm).

The glass tanks (n ¼ 12) and their respective controls
(bottles [vol: 5.0 L] with only water samples from the
reservoir) were incubated (in a germination chamber4)
under controlled conditions: 21 C and PAR ¼ 47.25 lmol
m�2 s�1 with a light/dark light regime of 12/12 h. PAR was
estimated with an underwater radiation sensor.1 Period-
ically, the electrical conductivity and the concentrations of
nitrogen (organic N [Organic-N], ammonium nitrogen
[NH4

þ-N], nitrite nitrogen [NO2
�-N], nitrate nitrogen

[NO3
�-N]) and phosphorus (total P and dissolved P) were

determined in incubations. The electrical conductivity
measurements were made with conductivimeter.5 Analyt-
ical determinations were performed according to the
American Public Health Association standards (APHA et
al. 1998). During 3 mo (Brazilian elodea and narrowleaf
elodea) and 4 mo (coontail), the stem lengths were
measured approximately every 4 d, and the reservoir
water was replaced weekly. Bud counts and length
measurements were also made at this time. The criterion
adopted to conclude the experiment was when the daily
rates achieved approximately 0.05 cm d�1 (i.e., near the
stabilization of cultures). During the measurement proce-
dure, the yellow (senescent) stems were considered
detritus. The senescent fragments of the stems (and buds)
or the fallen fragments were not considered in the
calculated length. Only green and healthy structures were
considered for the length measurements. The adoption of
these criteria was simple because, after becoming senes-
cent (yellow), decomposition of this kind of resource is
quick and clear (Chiba de Castro et al. 2013).

The temporal variations the cultures yielded (stems
lengths þ buds lengths) were fitted to a logistic model
(Vogels et al. 1975; Equation 1). To achieve the mean
parameters of each culture, the fittings were performed with
length averages (n ¼ 40). In addition, the growth of each
plant was fitted to obtain the dispersion of parameters
within the model (l and K). These kinetics parameters were
obtained by nonlinear regressions, calculated with the
iterative algorithm of Levenberg-Marquardt (Press et al.
2007).

dN
dt
¼ lN 1� N

K

� �
ð1Þ

where N is the length (cm), l is the growth rate constant
(d�1), K is the maximum value of the length (yield) of the
culture (equivalent to the maximum value of biomass under
selected experimental conditions).

The td was estimated according to Equation 2 (Mitchell
1974):

td ¼
ln2
l

ð2Þ

The biomass of the macrophytes was calculated by linear
regression using length and dry mass (Equation 3):

Dry massðmgÞ ¼ m3 fresh plant lengthðcmÞ½ � ð3Þ
where m is the slope of the straight line calculated with the
least-squares method, with x (fresh plant length) as 0 and y
(dry mass) as 0 (i.e., linear coefficient ¼ 0). The following
values were obtained for m: 6.15 (Brazilian elodea), 10.04
(narrowleaf elodea), and 11.11 (coontail). A comparison
between fresh and dry plant biomass led to water content
for Brazilian elodea, narrowleaf elodea, and coontail of 87.9
(n ¼ 122), 90.4 (n ¼ 119), and 90.9% (n ¼ 140), respectively.

The frequency distributions of the following parameters
were evaluated: yield (length), growth rate constant;
doubling time, and the number of buds of the cultures.
These parameters were submitted to the normality test
(Shapiro and Wilk 1965), at a significance level of 0.05. The
time changes of the yields (i.e., the growth curves) were
submitted to the Kolmogorov-Smirnov test to check
distribution normality and to the Bartlett test to verify
homoscedasticity. Because these conditions were satisfied,
the variables were tested using repeated measures ANOVA.
The differences among the curves were compared using the
Tukey test with a significance level of 0.01. The software
used in the statistical analyses was PAST version 2.16
(Hammer et al. 2001).

RESULTS AND DISCUSSION

The average values of physical and chemical variables
measured during the growth experiments are presented in
Table 1. The culture media were kept under the same
proportions between variables that were observed in the
controls. However, some values (i.e., electrical conductivity,

TABLE 1. AVERAGE VALUES (SD) OF PHYSICAL AND CHEMICAL VARIABLES DURING THE GROWTH EXPERIMENTS WITH BRAZILIAN ELODEA, NARROWLEAF ELODEA, AND COONTAIL FROM

JUPIÁ RESERVOIR.

Variables n Brazilian Elodea Narrowleaf Elodea Blank1 n Coontail Blank2

EC (lS cm�1) 130 83.5 (25.6) 70.6 (20.8) 53.5 (1.9) 140 149.9 (36.8) 172.4 (4.2)
N-NH4

þ (lg L�1) 24 166.0 (114.5) 138.6 (98.7) 28.8 (1.4) 24 22.4 (30.2) 21.7 (1.1)
N-NO3

� (lg L�1) 24 13.8 (15.8) 22.2 (19.5) 43.5 (2.5) 24 32.4 (7.3) 41.8 (1.1)
N-NO2

� (lg L�1) 24 1.5 (1.2) 2.1 (1.9) 3.7 (0.2) 24 1.97 (0.4) 2.54 (0.2)
N-organic (lg L�1) 24 841.3 (90.3) 1075.7 (154.3) 740.0 (103.9) 24 852.1 (149.9) 711.6 (56.6)
TP (lg L�1) 24 18.2 (5.3) 17.7 (7.1) 21.2 (5.3) 24 28.4 (4.3) 16.8 (3.7)
TDP (lg L�1) 24 8.9 (4.5) 7.7 (2.1) 11.5 (4.1) 24 9.5 (2.4) 7.6 (0.1)

Where: SD ¼ standard deviation; EC ¼ electrical conductivity; TP ¼ total phosphorus; TDP ¼ total dissolved phosphorus; Blank1 ¼ sample of water collected in July 2009 at
20846 001.4 00S; 51836 001.9 00W; and Blank2 ¼ sample of water collected in January 2010 at 20841033.0 00S; 51823014.3 00W); n ¼ number of samples.
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organic N, and N–NH4
þ concentrations) observed in the

incubations were higher because of the addition of
sediment for attachment of the plants. In all incubations,
the average concentrations of N–NO3

� and N–NO2
� were

lower than those seen in the blanks. The average concen-
trations of total and dissolved phosphorus were lower than
those of blanks in incubations with Egeria. The average value
of electrical conductivity was only lower than that of the
control (87%) in incubations with coontail. From the initial
40 plants used in each experiment, 62.5% survived in the
Brazilian elodea culture, 75% in the culture of narrowleaf
elodea, and all plants in the coontail culture.

Two approaches were adopted to compare the growth of
the three species. The first one comprised the use of the
biomass average values for the estimations of the yield (K) of
the culture and the growth rate constant (l); in the second
approach, the fit of biomass of each exemplar was made to
achieve the dispersion values of parameters K and l. This
strategy was also applied to the buds analysis (the use of
mean values to compare the number of buds and the buds’
daily rates of formation, and the number of buds of each
specimen to achieve the dispersions frequency). Figures 1–3
depict the growth rates and yields for each macrophyte
species. On average, the increase in biomass of Egeria had
higher rates in the second and third weeks; after which, the
daily rates tended to decrease. For Brazilian elodea, the
highest average value was measured on the 14th d (0.19 cm
d�1 ” 1.24 mg d�1) and for narrowleaf elodea the highest
average value was measured on the 11th d (0.53 cm d�1” 5.32
mg d�1). The increase in biomass of coontail had higher rates
during the second month (31st to 60th d). The highest
average value was measured on the 45th d (0.19 cm d�1” 2.11
mg d�1). The temporal changes of daily rates, as verified in
our experiments, are characteristics of growths in all
environments. The integration of daily rates defines the
logistic growth curve, and consequently, the kinetic param-
eters l and K (Vogels et al. 1975). These changes derive from
the intrinsic metabolic characteristics of plants (which define
l) and environmental (or experimental) conditions (which
define the K values; e.g., competition for space, self-shading,
and nutrients availability), and in Jupiá Reservoir, basically,
the corresponding factors drive the growth of macrophytes.

The average number of narrowleaf elodea vegetative
budding was 4.0 per branch, with the highest rates observed
in the first month. For Brazilian elodea, the average number
of buds was 1.6 per branch while for coontail it was 0.75. The
highest average daily rates of bud occurred on the 14th day
for Brazilian elodea cultures and on the 35th day for
coontail, with the highest rates observed at the same time of
the highest growth rates. At the end of the experiment, the
number of vegetative budding did not show a normal
distribution at a 0.05 significance level; in most of the cases,
the plants presented 0 to 6 buds, as shown in Figures 1–3.
The vegetative budding was effective to increase the biomass
of these macrophytes because the daily rates for sprouting
and growth were similar. The differences in daily rates for
sprouting and the final number of buds suggest different
growth strategies adopted by each species. Another inter-
esting feature was the large standard deviation in the results.
More than a mere dispersion in the data, these results

pointed to a high variability of Brazilian elodea, narrowleaf
elodea, and coontail, which then required a large number of
samples to obtain the biometric curves.

The parameters from fitting the data in Figures 1–3
showed that under the experimental conditions used, on
average, the macrophytes’ growth exhibited a td time
between 11.6 (Brazilian elodea) and 23.9 d (coontail) and a
yield between 8.6 (” 52.9 mg; Brazilian elodea) and 19.6 cm
(” 217.8 mg; coontail). The yield of cultures with Egeria
presented a normal distribution (at a 0.05 significance level),
but that did not apply to the yield of coontail cultures.
Because the l is a intrinsic (physiological) parameter of the
plants species and the yield derives from environmental
conditions, the carrying capacity (i.e., the length or biomass;
K parameter, Equation 1) obtained from laboratory
experiments should not be indiscriminately used to simu-
late plants growth in the environment because this value is
the result of conditions that do not always have close
correspondence with natural conditions. For this purpose,
the macrophyte assessment is particularly relevant for
mapping the incidence areas and the proposition of
carrying capacity (e.g., Caffrey et al. 2007). The incidence
area, carrying capacity (i.e., density), and the growth rate
constant of the macrophytes are essential data for imple-
menting any program of harvesting those plants, whereas
the rates of biomass removal derive from the product of
those three parameters (Gutiérrez et al. 2001). Thus,
considering the densities of any macrophyte species and
their incidence areas, the l values shown in Table 2 permits
an a priori definition of efforts (e.g., costs, material
resources, harvest schedule, etc.) to be adopted in planning
a specific physical control program.

In contrast to what was observed for coontail, the Egeria
growth rates did not show a normal distribution at a 0.05
significance level. Normal distributions of td were observed
for Egeria but not for coontail. The r2 values derived from
fitting the model to Equation 1 were high and so were the
standard deviations, as shown in Figures 1–3. According to
the determination coefficients (r2), the model adopted was
robust in describing growth for Brazilian elodea, narrowleaf
elodea, and coontail. In the parameterization of Brazilian
elodea growth, the average biomass data used included only
the first 49 d because after that, time mass loss (i.e., death
and decomposition of leaves) prevailed, as seen in Figure 1.
ANOVA–repeated measures tests showed significant differ-
ences (P , 0.01) between the three growth curves (samples
size¼ 26; average values). When using data from the first 49
d, avoiding interference from Brazilian elodea mass loss
(samples size ¼ 14; average values), similar growth was
observed for Brazilian elodea and coontail (P ¼ 0.97); this
result only partially supports the hypothesis because of the
higher growth rate of Brazilian elodea (P , 0.01). Another
factor that tends to compete with the hypothesis (i.e., the
greater adaptive value of indigenous species) is the closeness
of the values obtained for the average growth rates; on the
other hand, the most frequent values for the growth rate
constant tended to be higher for the two Egeria species. The
growth rate constant of the macrophytes were close, and
there was little relative difference between their minimum
and maximum values (Table 2). Those parameters suggest
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the possibility of intense competition among the species.
Thus, the closeness of growth rate constants constitutes an
advantage for the cosmopolitan species.

Different macrophyte life forms (e.g., emergent, sub-
merged, and floating) and changes in environmental
variables (i.e., forcing functions) interfere in different ways
with the growth rate constants (Barko et al., 1986). The
responses of macrophytes to abiotic factors, together with

the effects of intraspecific and interspecific relationships,
determine the basis of the diversity and abundance of
communities (Santamarı́a 2002, Lacoul and Freedman
2006). Considering the predominance of bottom-up control
(e.g., the growth regulated by nutrient availability; Glibert
1998), using the logistic model, the effects from forcing
functions (e.g., light, temperature, nutrients; Sand-Jensen
and Madsen 1991, van der Heide et al. 2006, Moss et al. 2013)

Figure 1. The average growth of Brazilian elodea under controlled conditions (cumulative yield [cm] and daily growth rate [cm d�1]. (A) where cumulative
yield¼ closed symbols; growth daily rate¼open symbols; standard deviations¼bars. (B) The frequencies of growth rate constant (d�1). (C) Final yield (cm).
(D) Doubling time (d). (E) Temporal variation in the average number of buds (cumulative number and daily rate [bud d�1]. (F) The frequency of number of
buds at the end of experiment.
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are typically manifested by changes in the growth rate
constants (Jørgensen 1980, Bowie et al. 1985). Those rate
constants may also include other processes, such as
respiration, excretion, abrasion/export, and nonpredatory
mortality (decomposition) (Canale and Auer 1982). The
fittings for plant growth led to average rate constants
(Brazilian elodea: 0.06 d�1; narrowleaf elodea: 0.052 d�1;

coontail: 0.029 d�1) and lmax/lmin relations (Brazilian elodea:
5.1; narrowleaf elodea: 3.9; coontail: 3.3) similar to other
species (cf. Table 2). The proximity of the rate constants
suggests that these plants have a close niche, which could
explain the changes in daily rates for sprouting and for the
final number of buds. However, in Jupiá Reservoir, as in
several other Neotropical aquatic ecosystems, these species

Figure 2. The average growth of narrowleaf elodea under controlled conditions (cumulative yield [cm] and growth daily rate [cm d�1]. (A) where cumulative
yield¼ closed symbols; growth daily rate¼open symbols; standard deviations¼bars. (B) The frequencies of growth rate constant (d�1). (C) Final yield (cm).
(D) Doubling time (d). (E) Temporal variation in the average number of buds (cumulative number and daily rate [bud d�1]. (F) The frequency of number of
buds at the end of experiment.
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coexist. It is possible that, through this growth strategy,
Brazilian elodea, narrowleaf elodea, and coontail also
compete with other native and alien submerged species.
For example, bladderwort (Utricularia L.), fanwort (Cabomba
Aubl.), pondweed (Potamogeton L.), and hydrilla [Hydrilla
verticillata (L. f.) Royle] were recently reported in the Paraná
River, downstream of Jupiá Reservoir (Sousa et al. 2009),

which has average td lower (i.e., 7 d; Table 2) than that
presented by Brazilian elodea, narrowleaf elodea, and
coontail. The floating genus, especially the small ones, such
as mosquitofern (Azolla Lam.), smaller duckweeds (Lemna L.),
larger duckweeds (Spirodela Schleid.), salvinia (Salvinia Ség.),
and watermeal (Wolffia Horkel ex Schleid.), can also present
a td that is smaller or is of the same order of magnitude as

Figure 3. The average growth of coontail under controlled conditions (cumulative yield [cm] and growth daily rate [cm d�1]. (A) where cumulative yield¼
closed symbols; growth daily rate¼ open symbols; standard deviations¼ bars. (B) The frequencies of growth rate constant (d�1). (C) Final yield (cm). (D)
Doubling time (d). (E) Temporal variation in the average number of buds (cumulative number and daily rate [bud d�1]. (F) The frequency of number of
buds at the end of experiment.
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Brazilian elodea (td¼ 5 to 22 d), narrowleaf elodea (td¼ 7 to
27 d), and coontail (td¼ 15 to 51 d). In this case, the floating
species have an advantage because light is not a limiting
effect for these plants nor is the shadowing effect that is
imposed on submerged species.
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Ozimek T, Pieczyńska E, Hankiewicz A. 1991. Effects of filamentous algae on
submerged macrophyte growth: a laboratory experiment. Aquat. Bot.
41:309–315.

Panigatti MC, Maine MA. 2003. Influence of nitrogen species (NH4
þ and

NO3
�) on the dynamics of P in water-sediment-Salvinia herzogii systems.

Hydrobiologia 492:151–157.
Pereira AMM. 2004. Influência da Velocidade de Corrente no Tratamento

de Efluentes de Carcinicultura com a Macrófita Aquática Pistia stratiotes.
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